Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/diamond

Optical properties of graphitic carbon nitride films prepared

DIAMOND RĚLATED MATERIALS

Shiori Fujita^a, Hitoe Habuchi^{a,*}, Shunsaku Takagi^a, Hirofumi Takikawa^b

^a National Institute of Technology, Gifu College, 2236-2 Kamimakuwa, Motosu City, Gifu 501-0495, Japan, ^b Toyohashi University Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan

ARTICLE INFO

by evaporation

Article history: Received 1 December 2015 Received in revised form 3 February 2016 Accepted 6 February 2016 Available online 18 February 2016

Keywords: Carbon nitride Optical properties Physical vapor deposition

1. Introduction

Liu and Cohen reported that carbon nitride (C₃N₄) can show stability via theoretical calculations [1]. They showed that C₃N₄ can have bulk modulus comparable to or greater than that of diamond with theoretical calculations. However, it is difficult to synthesize three-dimensional crystalline C₃N₄ such as α -C₃N₄ and β -C₃N₄ because carbon nitride synthesized by chemical or physical vapor deposition is almost amorphous [2,3]. Although rhombohedral phase carbon nitride (r-C₃N₄), which consists of two-dimensional (2D) sheets and a stacking structure, did not show high bulk modulus in their work, the synthesis has already been demonstrated by Liebig and Berzelius [4]. Presently, r-C₃N₄ is also known as graphitic carbon nitride $(g-C_3N_4)$ [5]. Graphitic carbon nitride is a semiconductor with a band gap around 2.7 eV and has been found to exhibit photocatalytic properties for organic contaminant degradation [6]. While the photocatalytic efficiency of pure g-C₃N₄ is considerably small, adding a small amount of Pt nanoparticles activates H₂ production. Similar to the evolution of the field of TiO₂ photocatalysts, following this discovery, g-C₃N₄ has been actively studied as a basis for the development of new photocatalysts [7]. It is also expected that $g-C_3N_4$ will be used as a semiconductor material in electronic device applications.

The use of g-C₃N₄-based materials in electronics is hindered by the current limitation of g-C₃N₄ synthesis to the powder form of the material. While g-C₃N₄ powder is easily synthesized by thermal polymerization of melamine, a g-C₃N₄ film with a flat surface cannot be prepared from the g-C₃N₄ powder by a wet process due to the insolubility of the powdered g-C₃N₄. Therefore, new synthesis techniques must be

ABSTRACT

Graphitic carbon nitride (g-C₃N₄) consists of two-dimensional sheets of carbon and nitrogen atoms. Films of $g-C_3N_4$ were prepared by evaporating guanidine carbonate at four different substrate temperatures. The optical absorption band of the films appears at 3.3 eV and the optical energy gaps are calculated to be 2.83–2.90 eV. Band intensity increases with increasing substrate temperature, but the energetic band position does not shift. The photocurrent of g-C₃N₄ films can be observed by irradiation with monochromatic light. While the photosensitivity spectra are in almost complete correspondence with the optical absorption spectra, it is also found that the photocurrent is generated by irradiation at photon energies below the optical energy gap down to 2.5 eV.

© 2015 Elsevier B.V. All rights reserved.

developed for the fabrication of g-C₃N₄ films to develop g-C₃N₄-based optoelectronic materials. The synthesis of planar films will also enable quantitative evaluation of optical properties. Recently, Riken reported a g-C₃N₄ film synthesis by evaporation with guanidine carbonate as a source [8]. In this study, optical absorption spectra of the g-C₃N₄ films prepared following the procedure described in [8] were obtained using photothermal deflection spectroscopy (PDS), and the optical absorption coefficients of g-C₃N₄ were precisely determined for the first time. The photocurrent of the g-C₃N₄ films was obtained by irradiating with monochromatic light.

2. Materials and methods

2.1. Preparation of $g-C_3N_4$ films

Fig. 1 shows the experimental apparatus for preparation of g-C₃N₄ films. Guanidine carbonate powder with a purity of 97% was placed at the bottom of a quartz test tube. Quartz glass substrates were placed in the tube, 4-10 cm away from the edge of guanidine carbonate powder. The tube was capped with quartz wool and was heated for 2 h in air using a tube furnace (Nissin Seiki Co., Ltd., TMF-300N). It is assumed that the heating causes the polymerization of guanidine carbonate followed by the evaporation of the polymer. The evaporated polymer then forms C_3N_4 sheets on the substrate. Annealing temperatures T_A were set at 600 and 630 °C and a heating rate of 10 °C/min was used. The temperature in the center of the furnace was different from the substrate temperature because of the inhomogeneous temperature distribution in the furnace. Therefore, the substrate temperature T_s was also monitored during heating. T_s is considered an important parameter rather than T_A because melemium ion, which is a precursor of g-C₃N₄,

Corresponding author. E-mail address: habuchi@gifu-nct.ac.jp (H. Habuchi).