研究論文

RF-UBMS で作製したフルオロカーボン膜の 基板バイアス印加による密着性の改善

豊橋技術科学大学 戸谷陽文、針谷 達 爲國公貴、滝川浩史

、他川伯又

伊藤光学工業株式会社 神谷雅男

Improvement of Substrate Adhesion of Fluorocarbon Films Prepared by RF-UBMS with Applying Substrate-Bias Voltage

Takafumi TOYA^{*}, Toru HARIGAI^{*}, Koki TAMEKUNI^{*}, Hirofumi TAKIKAWA^{*}, and Masao KAMIYA^{**}

*Toyohashi Univ. Technol., Aichi, Japan, **Itoh Optical Industrial Co., Ltd., Aichi, Japan

Abstract

There are some related issues in the polytetrafluoroethylene (PTFE) coating techniques at room temperature, such as poor adhesion of the coated films. Fluorocarbon (C_xF_y) films with similar properties to PTFE such as high water repellency and low friction are obtained using the sputtering deposition with a PTFE target. In this paper, the film-substrate adhesion of C_xF_y films formed by RF unbalanced magnetron sputtering (RF-UBMS) method with a PTFE target is investigated. C_xF_y films were fabricated on Si substrates under different substrate-bias voltage. Tape-peeling test was performed to evaluate film-substrate adhesion of the films. Results revealed that the application of the substrate-bias voltage slightly reduced the film deposition rate. While C_xF_y films formed by applying a DC substrate-bias voltage of -50 V showed water repellency close to that of PTFE used as the target with excellent film-substrate adhesion. However, carbon-rich C_xF_y films were formed under an excessively high substrate-bias voltage of -100 V, exhibiting a decrease in water repellency of the film. This work proves that the application of an appropriate substrate-bias voltage could improve the adhesion between the formed film and the substrate in the sputtering deposition using a PTFE target.

Keywords: Polytetrafluoroethylene, Fluorocarbon, Thin film, Unbalanced magnetron sputtering, Water repellency, Substrate adhesion

1. 緒言

炭素原子とフッ素原子からなるフッ素樹脂の ひとつに、ポリテトラフルオロエチレン (Polytetrafluoroethylene: PTFE)がある。PTFEの 構造は、強固な CF2 鎖構造からなり、優れた撥水 性や低摩擦特性、化学的安定性、電気絶縁材料性 等を有することから、生物医学分野や半導体分野 等の幅広い分野で機能性薄膜として利用されて いる¹⁻⁵⁾。

PTFE 膜のコーティング方法として、スプレー 法 ⁶⁾や触媒化学蒸着(Catalytic Chemical Vapor Deposition: Cat-CVD)法^{7,8)}が広く用いられている。 スプレー法は、PTFE 粒子をスプレーガンで基材 に吹き付けることで PTFE 粒子を塗布し、その後、 焼成工程を経て、塗布膜を硬化させる成膜方法で ある^の。スプレー法を用いて形成した PTFE 膜は、 基材への密着性に優れる。しかし、スプレー法で は、膜厚の制御が難しく、数 10~数 100 nm 厚の 薄膜形成が困難である。また、焼成工程において 熱を加えるため、耐熱温度の低い基材には成膜で きない。

Cat-CVD 法は、原料ガスを加熱した触媒に接触 させることで分解し、分解反応により生成したラ ジカルを基材に堆積させ、PTFE 膜を得る方法で ある^{7,8)}。Cat-CVD 法では、ガス流量や堆積時間 を制御することで、スプレー法に比べ容易に膜厚 を制御できる。また、焼成工程がないことから、 比較的低い基板温度で成膜が可能であり、幅広い 基材へ PTFE 膜を形成できる。一方で、Cat-CVD 法を用いて形成した PTFE 膜は、基材への密着性 が低い⁹。

数 10~数 100 nm 厚の薄膜形成法として、スパ ッタリング法がある^{10,11)}。PTFE 材をターゲット に用いて、RFスパッタリング法で作製した膜は、 ターゲット PTFE 材とは異なった構造を持ち、炭 素とフッ素から成るフルオロカーボン(C_xF_v)膜 になる¹²⁻¹⁵⁾。スパッタリング成膜では、Ar イオ ンの衝突により、ターゲットに用いた PTFEの CF2 結合が切れ、炭素やフッ素から成る各原子・分子 が基板上に堆積する。したがって、堆積する膜は、 ターゲット PTFE 材とは異なる構造になる。PTFE 材をターゲットに用いて、RF スパッタリング法 で作製した C_xF_y 膜は、高い撥水性、低摩擦特性等 の PTFE 材に近い優れた膜特性を有する^{12, 16, 17)}。 しかし、スパッタリング法を用いて作製した C_xF_y膜と基板との密着性についての報告は少な い ^{9, 18)}。鈴木らは、PTFE をターゲットとした RF マグネトロンスパッタリング法を用いてフ ルオロカーボン膜を形成し、スクラッチ試験に より密着性を評価した %。成膜時の基板温度を 高くすることで密着性が向上したと報告して いる。また、岩森らは、PTFE をターゲットと し、磁場なしと、強磁場、弱磁場、非平衡磁場 の3種類の磁場を備えた RF マグネトロンスパ ッタリング法によりフルオロカーボン膜形成 した¹⁸⁾。密着性の評価には、SAICAS 法を用い ており、磁場なしで形成したフルオロカーボン 膜の密着強度が、磁場ありで形成したフルオロ カーボン膜の密着強度よりも高い数値を示し たと報告している。しかし、これらの研究では、 成膜時に基板バイアス電圧は印加されていない。

本研究では、PTFE 円材をターゲットとし、RF アンバランスドマグネトロンスパッタリング (RF Unbalanced magnetron sputtering: RF-UBMS) 法を 用いて、基板バイアス電圧の異なる条件で C_xF_y 膜の形成を行い、形成した膜と基板の密着性を評 価した。UBMS 法は、一般的なマグネトロンス パッタリング法に比べ、外側磁極と内側磁極の バランスを意図的に崩し、非平衡磁場とするこ とでプラズマが拡がりやすくなり、堆積膜は基 板バイアス電圧の影響を受けやすい。したがっ て、基板バイアス電圧印加により、膜の緻密化 や密着性の向上が期待できる¹⁹⁻²¹⁾。

2. 実験方法

 C_xF_y 膜は、PTFE 円材(ケミストン、 ϕ 46×t3 mm)をターゲットとして用いた RF-UBMS 法で 形成した。ターゲットと基板との距離は 70 mm と した。PTFE ターゲット表面の不純物を取り除く ため、 C_xF_y 膜の成膜前に、予備スパッタを行った。 予備スパッタでは、PTFE ターゲットと基板の間 にシャッターを挿入した。予備スパッタ条件は、 到達圧力を 5×10⁻⁴ Pa 以下とし、Ar ガス流量を 30 sccm、RF(13.56 MHz)電力を 50 W とした。予 備スパッタ時間は 5 min とした。 C_xF_y 膜は、到達 圧力を 5×10⁻⁴ Pa 以下、Ar ガス流量を 30 sccm、 RF(13.56 MHz)電力を 50 W とした条件で成膜 した。基板には、Si 基板(12×12×t0.5 mm³)を 用いた。また、成膜時のプロセス圧力は、排気バ ルブの開度により調整した。

基板バイアス電圧を0Vとし、プロセス圧力を 変えることで、プロセス圧力と成膜速度の関係を 調べた。また、プロセス圧力を固定し、膜厚およ び基板バイアス電圧を変えて作製した C_xF_y 膜の 基板密着性を評価した。成膜条件の詳細を **Table 1** にまとめた。

PTFE は高分子材料であり、ターゲットとして

Table 1 Deposition conditions of $C_x F_y$ film prepared by RF-UBMS.

Sample No.	Process pressure (Pa)	e DC substrate-bias voltage (V)	Process time (min)
#1	5.0	0	5
#2	5.0	0	7.5
#3	5.0	0	10
#4	5.0	0	20
#5	5.0	0	30
#6	5.0	-25	8
#7	5.0	-50	8
#8	5.0	-100	8

長時間プラズマに曝されることで、表面材質が変 わる可能性があり、PTFE ターゲットの表面材質 の変化は、形成膜に影響を与える可能性がある。 したがって、本研究では、Fig. 1 に示すように、 ターゲットに用いた PTFE 円材を、未使用状態 (New)と、200 min 程度使用した状態(Used)、 Used 状態より更に長時間使用した状態(Very used)の3つに分け、実験を行った。ターゲット 表面において、常にスパッタされている箇所は自 色であった。一方で、スパッタされにくい中心近 くは、プラズマに曝されることで茶色く変色して いた。

作製した膜の膜厚は、電界放出型走査電子顕微 鏡 (Filed-emission scanning electron microscope: FE-SEM、日立ハイテクノロジーズ、SU8000Type Ⅱ)を用いた断面観察から算出した。FE-SEM 観 察時のチャージアップを抑えるため、クイックコ ーター (SANYU DENSHI CO.LTD, SC-701) を用 いて作製した膜の表面へ Au コーティングを施し た。作製した膜の組成比は、X 線光電子分光計 (X-ray photoelectron spectroscopy: XPS、アルバッ ク・ファイ、PHI Quantera SXM-CI)を用いて分析 した。作製した膜の基板密着性は、テープ剥離試 験 (JIS K5600-5-6 (ISO2409)) に基づいて評価し た。テープ剥離試験では、作製した膜に対し、格 子状に2mm間隔で縦横6本ずつの切り込みを入 れ、25 個のセルを形成した。テープを付着させ、 引き剥がした際の各セル上の膜の剥がれ具合を 分類 0~5 の 6 段階に分類し、評価した。分類 0 は、どのセル上の膜にも剥がれがない状態であり、 分類5は、セル上の膜がすべて剥がれた状態を表 す。分類番号が大きいほど、セル上の膜の剥がれ 具合が多く、膜の基板密着性が悪いことを意味す る。作製した膜の水滴接触角は、接触角計(協和

Fig. 1 Photographs of surface condition of a PTFE target. (a) New, (b) Used, and (c) Very used.

界面科学株式会社、DropMaster DMe-210)を用い て測定した。1.5 μlのイオン交換水を膜に滴下し、 5 点を平均することで水滴接触角を算出した。

3. 結果と考察

3.1 プロセス圧力と成膜速度

Figure 2 に、異なるプロセス圧力下において作 製した C_xF_v膜の成膜速度を示す。プロセス圧力を 高くするほど成膜速度は速くなり、5.0 Paのとき に最大値 11 nm/min であった。また、5.0 Pa より 高いプロセス圧力下では、成膜速度は低下し、10 Paでは、成膜速度 3 nm/min と著しく低下した。 低いプロセス圧力下では、スパッタに寄与する Ar 原子数が少なく、ターゲットから放出される原 子・分子の数が少ないため、成膜速度が遅くなっ たと考えられる。プロセス圧力が高くなることで、 スパッタに寄与する Ar 原子数が増加し、それに ともないターゲットから放出される原子・分子数 も増加するため、成膜速度が向上した。一方で、 10 Pa 程度の高すぎるプロセス圧力下では、ター ゲットー基板間における平均自由行程が短くな るため、ターゲットから放出された原子・分子が、 基板へ到達しづらくなったために、成膜速度が著 しく低下したと考えられる。

3.2 膜厚と膜構造および密着性

Figure 3 に、**Table 1**の#1~#5 に示す成膜時間の異なる条件で作製した C_xF_y膜の C1s XPS スペ

Fig. 2 Deposition rate of films prepared under different process pressure.

Fig. 3 C1s peaks on XPS spectra of films prepared under different process time.

クトルを示す。Fig. 3 中に示す Target PTFE のスペ クトルは、スパッタターゲットとして用いた PTFE 材である。Target PTFE からは、291.4 eVの CF2 結合に由来するピークが確認できた。一方で、 作製した CxFy 膜では、成膜時間の違いによる出現 ピークの違いは見られなかったが、Target PTFE と同じ291.4 eVのCF2結合ピークの他に、284.8 eV、 286.8 eV、289.2 eV、293.6 eV にピークが現れた。 C_xF_y 膜に対して現れた結合エネルギーピークは、 Fig. 3 に示すように、それぞれ C-C、C-CF、CF、 CF3 結合に由来する^{22,23)}。スパッタによって作製 した $C_x F_y$ 膜の結合構造は、 ターゲット PTFE とは 異なった。スパッタ時にターゲット PTFE を形成 する CF2 鎖および CF2 分子構造が断ち切られ、C と F から構成される各分子が基板上に堆積し、 C_xF_y膜を形成したと考えられる。また、作製した C_xF_y膜では、成膜時間の違いによるピークの差異 は見られなかった。

Table 1 の#1~#5 に示す条件で作製した C_xF_y膜 に対し、テープ剥離試験を実施し、成膜時間の違 いによる $C_x F_v$ 膜の基板密着性を評価した。 Table 2 に、成膜時間の違いによる膜厚の結果、テープ剥 離試験後の基板上セルの状態と、テープ剥離試験 による基板密着性の評価結果をまとめた。#1の膜 厚 26 nm の C_xF_v膜では、25 個のセル全てに膜が 残っていた。したがって、#1 の C_xF_y 膜の評価は、 膜の剥がれが見られない分類0であり、膜と基板 との密着性は良好であった。#2 の膜厚 55 nm の C_xF_y膜では、白く見える箇所と青く見える箇所が 混在していた。白色箇所は、膜が剥離した箇所で あり、#2の CxFy 膜では、完全に膜が剥離したセ ルと、部分的に膜の剥離が生じているセルが混在 する分類 4 に相当した。また、#3~#5 の膜厚が 86 nm より厚い C_xF_y膜では、25 個のセル全体が白 く見え、膜が完全に剥離していた。したがって、 膜厚が 86 nm より厚い C_xF_y膜では、膜がすべて剥 離した分類5の状態であり、膜と基板との密着性 は悪かった。C_xF_y膜の膜厚が厚くなるほど、基板 との密着性は悪化した。薄膜では、膜厚が増える ほど、膜の内部応力が大きくなり、基板との密着 性が低下する傾向にある 24)。スパッタを用いて作 製した C_xF_y膜では、わずか 55 nm 程度の膜厚で、 基板との密着性が大きく低下した。

3.3 基板バイアス電圧の印加

Figure 4に、FE-SEMによる断面観察から得た、 DC 基板バイアス電圧の異なる条件で作製した C_xF, 膜の膜厚を示す。成膜時間は、DC 基板バイ

Sample No.	#1	#2	#3	#4	#5
Film thickness (nm)	26	55	86	187	325
Photograph of prepared films after tape-peeling test					1
Classification	0	4	5	5	5

Table 2 Adhesion evaluation of films prepared under different process time by tape-peeling test.

Fig. 4 Film thickness of films prepared under different DC substrate-bias voltage.

アス電圧 0 V のとき 7.5 min とし、DC 基板バイア ス電圧を-25、-50、-100 V のとき 8 min とした。 New PTFE ターゲットと Used PTFE ターゲットを 用いて、DC 基板バイアス電圧を 0、-25、-50 V と して作製した C_xF_y 膜は、ほぼ同じ 55 nm 程度の膜 厚であった。また、DC 基板バイアス電圧を-100 V として作製した C_xF_y 膜では、基板の断面 SEM 写 真から膜厚を十分に観察できなかった。一方で、 スパッタ成膜前後において、基板表面の色に違い が見られたことから、DC 基板バイアス電圧が-100 V の条件においても、 C_xF_y 膜は形成できたと考え る。**Fig. 4** において、膜厚が明確でない C_xF_y 膜に ついては、白抜きのプロットで示した。

New PTFE ターゲットと Used PTFE ターゲット を用い、DC 基板バイアス電圧を 0、-25、-50 V と して作製した C_xF_y膜のうち、DC 基板バイアス電 圧を印加して作製した膜は、成膜時間が長いにも 関わらず、DC 基板バイアス電圧を印加せずに作 製した膜とほぼ同じ膜厚を示した。したがって、 DC 基板バイアス電圧を印加することで、C_xF_y 膜 の成膜速度がわずかに低下する傾向が見られた。 DC 基板バイアス電圧を印加することで成膜速度 が低下する要因は、Ar イオンによる C_xF_y 膜のス パッタが考えられる。印加する DC 基板負バイア ス電圧が高いほど、高いエネルギーを持った Ar イオンが基板へ衝突する。この Ar イオンによっ て、C_xF_y膜がスパッタされ、膜厚が薄くなった可 能性がある。そのため、成膜速度が低下したと考 えられる。DC 基板バイアス電圧を-100 V 印加し

た成膜では、高すぎる基板バイアス電圧によって、 成膜速度が著しく低下し、形成された C_xF_y 膜の膜 厚が薄すぎたため、SEM によって膜厚が確認でき なかった可能性がある。

Very used PTFE ターゲットを用いた成膜では、 DC 基板バイアス電圧を印加した際の膜厚が New と Used PTFE ターゲットを用いた成膜に比べ、わ ずかに厚くなる傾向を示した。また、DC 基板バ イアス電圧が-100 V の場合でも、基板上に C_xF_y 膜を確認でき、Very used ターゲットを用いた場合 には、DC 基板バイアス電圧-100 V であっても十 分な膜厚を持つ C_xF_v膜が得られた。したがって、 どの状態のターゲットであっても、-100 V の基板 バイアス電圧の成膜にて、十分な膜厚を持つ C_xF_y 膜は得られるが、成膜中もしくは成膜後に、堆積 した C_xF_y膜の一部が剥離し、膜が薄くなった可能 性も考えられる。また、長時間使用したターゲッ トを用いると、膜厚が厚くなった。ターゲットに 用いた PTFE は高分子材料であるため、長時間の スパッタによって、ターゲット表面における PTFE の結合状態が変化し、膜の堆積に影響が出 たと考えられる。

Figure 5 に、Used PTFE ターゲットを使用し、 Table 1 の#2, #6~#8 に示す条件で作製した C_xF_y 膜の Cls XPS スペクトルを示す。Fig. 5 中に示す Target PTFE のスペクトルは、スパッタターゲッ トとして用いた PTFE 材である。#6~#8 の DC 基 板負バイアス電圧を印加して作製した C_xF_y 膜 においても、#2のDC基板バイアス電圧0Vで 作製した C_xF_y膜と同様のピークが見られ、ター ゲットに用いた PTFE 材とは異なる結合ピーク を持った。#8 の DC 基板バイアス電圧-100 V で 作製した C_xF_y膜の結合ピークは、全体的に低エ ネルギー側にシフトした。膜中のフッ素が脱離 することで表面電位が変化すると、Cls XPS ス ペクトルは低エネルギー側へシフトする傾向 にある²⁵⁾。したがって、#8の結合ピークのシフ トは、C_xF_y膜中のフッ素量が少なくなったため であると考えられる。また、ターゲットの使用 状態による結合ピークの違いは見られなかっ

た。また、Fig. 6 に、異なる DC 基板バイアス電 圧を印加して作製した C_xF_y 膜中のフッ素と炭素 の組成比(F/C比)を示す。F/C比は、XPS分析 結果から算出した。PTFE の F/C 比が 2.0 であるの に対し、DC 基板バイアス電圧を 0、-25、-50 V と して作製した C_xF_y 膜の F/C 比は、1.0~1.2 程度で ほぼ同じ値であった。これらの膜に対し、DC 基 板バイアス電圧を-100 V 印加して作製した C_xF_y 膜の F/C 比は 0.8~1.0 程度であり、わずかに低い 傾向を示した。結合ピークの低エネルギー側シフ トの示唆されたとおり、#8 は他の膜に比べ、F/C が低い傾向であった。高い基板負バイアス電圧を 印加した成膜では、形成した C_xF_y 膜の CF₃ と CF₂ 結合に由来するピーク強度および F/C 比が低下し た。DC 基板負バイアス電圧が高いことで、基板 へ衝突するイオンのエネルギーが増加し、基板へ 堆積した膜中のフッ素が優先的にスパッタされ たと考えられる。

異なる DC 基板バイアス電圧を印加して作製し た C_xF_v 膜の水滴接触角を、Fig. 7 に示す。プロッ トは平均値を表し、エラーバーはその標準偏差 を表している。DC 基板バイアス電圧 0、-25、-50 Vの条件で作製した C_xF_y膜の水滴接触角は、103° ~110°であった。また、DC 基板バイアス電圧-100 V で作製した C_xF_y 膜は、95°~107°の水滴接触角 を示した。DC 基板バイアス電圧-100 V で作製し た C_xF_y膜のうち、Very used PTFE ターゲットを用 いて作製した C_xF_y 膜のみ、水滴接触角 107°と、低 い基板バイアス電圧で作製した C_xF_y 膜と同程度 の高い水滴接触角を示した。-100 Vの高い基板バ イアス電圧を印加して作製した C_xFy 膜は、他の C_xF_y 膜に比べ、わずかに F/C 比が低いことから、 水滴接触角も低い傾向になると考えられる。しか し、Fig. 4 に示したように、-100 V で作製した C_xF_y 膜は、用いたターゲットの使用状態によって、膜 厚が大きく異なることから、表面ラフネスなどが 異なり、水滴接触角のばらつきとして現れた可能 性もある。

ターゲットに用いた PTFE 材の水滴接触角は 112°であった。PTFE ターゲットの使用状態に関 わらず、-50 V 以下の DC 基板バイアス電圧とすることで、PTFE と同程度の水滴接触角を持つが C_xF_y 膜が得られることがわかった。

 Table 1 の#6~#8 に示す条件で作製した C_xF_y 膜

 に対し、テープ剥離試験を実施し、基板バイアス

 電圧による C_xF_y膜の基板密着性を評価した。Table

 3 に、テープ剥離試験後の基板上セルの状態と、

Fig. 5 C1s peaks on XPS spectra of films prepared under different DC substrate-bias voltage.

Fig. 6 F/C ratio of films prepared under different DC substrate-bias voltage.

Fig. 7 Water contact angle of films prepared under different DC substrate-bias voltages.

Sample No.	#6	#7	#8
Film thickness (nm)	58	57	-
Photograph of prepared films after tape-peeling test			
Classification	1	0	0

Table 3 Adhesion evaluation of films prepared under different DC substrate-bias voltage by tape-peeling test.

テープ剥離試験による基板密着性の評価結果を まとめた。#6のDC基板バイアス電圧-25 Vで作 製した C,F,膜では、セル中の白く見える箇所では 膜が剥離しており、青黒く色のついている箇所で は膜が残っていた。したがって、#6 の C_xF_y 膜で は、完全に膜が剥離したセルは見られなかったが、 部分的に膜の剥離が生じており、分類1に相当し た。また、#7、#8 の DC 基板バイアス電圧を-50 と-100 V として作製した C_xF_y膜では、膜が剥がれ て白く見える箇所がなく、25 個のセルすべてにお いて膜の剥離が見られず、分類0に相当した。ま た、#8のCxFy膜の色が他の試料と異なって見え るのは、膜厚が薄いためである。C_xF_y膜の成膜時 に、基板バイアス電圧を印加することで、膜と基 板との密着性が向上した。加えて、-50 V 以上の DC 基板バイアス電圧を印加することで、テープ 剥離試験において分類0となるほどの高い基板密 着性が得られた。高い DC 基板負バイアス電圧を 印加することで、基板へ衝突するイオンのエネ ルギーを増加させることができる。そのため、 C.F.膜を形成するために必要なCやFを持つイ オンの基板への打ち込み効果と、形成膜への Ar イオンの衝突効果を高め、C_xF_y膜の基板密着 性が向上したと考えられる。DC 基板バイアス電 圧の印加が、C_xF_y膜の基板密着性に効果的である ことが明らかになった。

4. まとめ

本研究では、PTFEをターゲットとし、RF-UBMS 法を用いて、基板負バイアス電圧の異なる条件で C_xF_y膜の作製を行い、作製膜と基板の密着性を評価した。主な結果を以下に示す。

- C_xF_y 膜は、26 nm の薄い膜厚時には、良好 な基板密着性を示したが、膜厚が厚くなる ほど、基板との密着性は低下した。
- (2) C_xF_y膜の成膜時に、-50 VのDC基板バイア ス電圧を印加することで、膜厚 57 nm の C_xF_y 膜においても良好な基板密着性を得た。
- (3) C_xF_y 膜は、PTFE とは異なる構造であった。
 一方で、C_xF_y 膜の水滴接触角は、PTFE と同 程度であり、高い撥水性を示した。

本研究により、PTFE ターゲットを用いた RF-UBMS 成膜では、-50 V 程度の適切な DC 基板 バイアス電圧の印加が、PTFE に近い膜特性を持 っ C_xF_y 膜の基板密着性を改善できることが明ら かになった。

謝辞

本研究の一部は、科学研究費補助金の支援によ り実施した。また、豊橋技術科学大学教育基盤セ ンターの分析機器を一部利用した。

References

- 1) L. Ignatieva, V. Kuryaviy, A. Tsvetnikov, S. Polyshchuk, V. Bouznik, *J. Phys. Chem. Solids.*, **68**, 2007, pp. 1106–1111.
- 2) S. Feng, Z. Zhong, Y. Wang, W. Xing, E. Drioli, J. Membr. Sci., 549, 2018, pp. 332–349.
- 3) C. H. Ng, J. Rao, J. Nicholls, *Mater. Sci. Technol.*, **9**, 2020, pp. 675–686.
- 4) Y. Y. Lin, C. W. Lin, L. J. Yang, A. B. Wang, *Electrochim. Acta.*, **52**, 2007, pp. 2876–2883.
- 5) S. M. Yeo, A. A. Polycarpou, *Tribol. Int.*, **60**, 2013, pp. 198–208.
- 6) T. J. Young, J. Jackson, S. Roy, H. Ceylan, S. Sundararajan,

Wear, **376–377**, 2017, pp. 1713–1719.

- 7) H. Yasuoka, M. Yoshida, K. Sugita, K. Ohdaira, H. Murata, H. Matsumura, *Thin solid films*, **516**, 2008, pp. 687–690.
- 8) H. M. Kim, S. Sohn, J. S. Ahn, *Surf. Coat. Technol.*, **228**, 2013, pp. S389–S392.
- 9) Y. Suzuki, H. Fu, Y. Abe, M. Kawamura, *Vacuum*, **87**, 2013, pp. 218–221.
- 10) R. S. Gonçalves, P. Barrozo, G. L. Brito, B. C. Viana, F. Cunha, *Thin solid films*, **661**, 2018, pp. 40–45.
- 11) M. O. Mavukkandy, S. A. McBride, D. M. Warsinger, N. Dizge, S. W. Hasan, H. A. Arafat, *J. Membr. Sci.*, **610**, 2020, p. 118258.
- 12) S. Iwamori, K. Noda, Mater. Lett., 66, 2012, pp. 349-352.
- 13) S. Iwamori, T. Tanabe, S. Yano, K. Noda, *Surf. Coat. Technol.*, **204**, 2010, pp. 2803–2807.
- 14) H. Biederman, Vacuum, 59, 2000, pp. 594-599.
- 15) H. Biederman, M. Zeuner, J. Zalman, P. Bílková, D. Slavínská, V. Stelmasuk, A. Boldyreva, *Thin Solid Films*, 392, 2001, pp. 208–213.
- 16) M. Drábik, O. Polonskyi, O. Kylián, J. Čechvala, A. Artemenko, I. Gordeev, A. Choukourov, D. Slavínská, I. Matolínová, H. Biederman, *Plasma. Process. Polym.*, 7, 2010, pp. 544–551.

- 17) D. S. Bodas, A. B. Mandale, S. A. Gangal, *Appl. Surf. Sci.*, 245, 2005, pp. 202–207.
- 18) S. Iwamori, N. Hasegawa, A. Uemura, T. Tanabe, I. Nishiyama, *Vaccum*, 84, 2009, pp. 592–596.
- 19) S. Rabadzhiyska, L. Kolaklieva, V. Chitanov, T. Cholakova, R. Kakanakov, N. Dimcheva, K. Balashev, *Mater. Today*, 5, 2018, pp. 16012–16021.
- 20) T. Kamata, D. Kato, H. Ida, O. Niwa, *Diam. Relat. Mater.*, 49, 2014, pp. 25–32.
- 21) K. Akari, E. Iwamura, *KOBE STEEL ENGINEERING REPORTS*, **53**, 2000, No. 2.
- 22) Y. L. Yu, X. Q. Xu, C. D. Lu, T. H. Zhang, Y. Ma, *Thin solid films*, **712**, 2020, p. 138302.
- 23) L. Li, P. M. Jones, Y. T. Hsia, *Appl. Surf. Sci.*, 257, 2011, pp. 4478–4485.
- 24) D. Sheeja, B. K. Tay, K. W. Leong, C. H. Lee, Diam. Relat. Mater., 11, 2002, pp. 1643–1647.
- 25) A. Aso, T. Kitada, S. Tanuma, *Surf. Interface. Anal.*, 1, 1995, pp. 255–263.