Optical properties of graphitic carbon nitride films prepared by evaporation

Shiori Fujita a, Hitoe Habuchia,⁎, Shunsaku Takagi a, Hirofumi Takikawab

a National Institute of Technology, Gifu College, 2236-2 Kamimakawasaka, Motosu City, Gifu 501-0495, Japan,
b Toyohashi University Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan

ARTICLE INFO

Article history:
Received 1 December 2015
Received in revised form 3 February 2016
Accepted 6 February 2016
Available online 18 February 2016

Keywords:
Carbon nitride
Optical properties
Physical vapor deposition

ABSTRACT

Graphitic carbon nitride (g-C3N4) consists of two-dimensional sheets of carbon and nitrogen atoms. Films of g-C3N4 were prepared by evaporating guanidine carbonate at four different substrate temperatures. The optical absorption band of the films appears at 3.3 eV and the optical energy gaps are calculated to be 2.83–2.90 eV. Band intensity increases with increasing substrate temperature, but the energetic band position does not shift. The photocurrent of g-C3N4 films can be observed by irradiation with monochromatic light. While the photosensitivity spectra are in almost complete correspondence with the optical absorption spectra, it is also found that the photocurrent is generated by irradiation at photon energies below the optical energy gap down to 2.5 eV.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Liu and Cohen reported that carbon nitride (C3N4) can show stability via theoretical calculations [1]. They showed that C3N4 can have bulk modulus comparable to or greater than that of diamond with theoretical calculations. However, it is difficult to synthesize three-dimensional crystalline C3N4 such as α-C3N4 and β-C3N4 because carbon nitride synthesized by chemical or physical vapor deposition is almost amorphous [2,3]. Although rhombohedral phase carbon nitride (r-C3N4), which consists of two-dimensional (2D) sheets and a stacking structure, did not show high bulk modulus in their work, the synthesis has already been demonstrated by Liebig and Berzelius [4]. Presently, r-C3N4 is also known as graphitic carbon nitride (g-C3N4) [5]. Graphitic carbon nitride is a semiconductor with a band gap around 2.7 eV and has been found to exhibit photocatalytic properties for organic contaminant degradation [6]. While the photocatalytic efficiency of pure g-C3N4 is considerably small, adding a small amount of Pt nanoparticles activates H2 production. Similar to the evolution of the field of TiO2 photocatalysts, following this discovery, g-C3N4 has been actively studied as a basis for the development of new photocatalysts [7]. It is also expected that g-C3N4 will be used as a semiconductor material in electronic device applications. The use of g-C3N4-based materials in electronics is hindered by the current limitation of g-C3N4 synthesis to the powder form of the material. While g-C3N4 powder is easily synthesized by thermal polymerization of melamine, a g-C3N4 film with a flat surface cannot be prepared from the g-C3N4 powder by a wet process due to the insolubility of the powdered g-C3N4. Therefore, new synthesis techniques must be developed for the fabrication of g-C3N4 films to develop g-C3N4-based optoelectronic materials. The synthesis of planar films will also enable quantitative evaluation of optical properties. Recently, Riken reported a g-C3N4 film synthesis by evaporation with guanidine carbonate as a source [8]. In this study, optical absorption spectra of the g-C3N4 films prepared following the procedure described in [8] were obtained using photothermal deflection spectroscopy (PDS), and the optical absorption coefficients of g-C3N4 were precisely determined for the first time. The photocurrent of the g-C3N4 films was obtained by irradiating with monochromatic light.

2. Materials and methods

2.1. Preparation of g-C3N4 films

Fig. 1 shows the experimental apparatus for preparation of g-C3N4 films. Guanidine carbonate powder with a purity of 97% was placed at the bottom of a quartz test tube. Quartz glass substrates were placed in the tube, 4–10 cm away from the edge of guanidine carbonate powder. The tube was capped with quartz wool and was heated for 2 h in air using a tube furnace (Nissin Seiki Co., Ltd., TMF-300N). It is assumed that the heating causes the polymerization of guanidine carbonate followed by the evaporation of the polymer. The evaporated polymer then forms C3N4 sheets on the substrate. Annealing temperatures Tα were set at 600 and 630 °C and a heating rate of 10 °C/min was used. The temperature in the center of the furnace was different from the substrate temperature because of the inhomogeneous temperature distribution in the furnace. Therefore, the substrate temperature Tβ was also monitored during heating. Tβ is considered an important parameter rather than Tα because melemium ion, which is a precursor of g-C3N4,